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Abstract: We developed an algorithm to remove decorrelation noise due to bulk motion in 
optical coherence tomography angiography (OCTA) of the posterior eye. In this algorithm, 
OCTA B-frames were divided into segments within which the bulk motion velocity could be 
assumed to be constant. This velocity was recovered using linear regression of decorrelation 
versus the logarithm of reflectance in axial lines (A-lines) identified as bulk tissue by 
percentile analysis. The fitting parameters were used to calculate a reflectance-adjusted upper 
bound threshold for bulk motion decorrelation. Below this threshold, voxels are identified as 
non-flow tissue, their flow values are set to zeros. Above this threshold, the voxels are 
identified as flow voxels and bulk motion velocity is subtracted from each using a nonlinear 
decorrelation-velocity relationship previously established in laboratory flow phantoms. 
Compared to the simpler median-subtraction method, the regression-based bulk motion 
subtraction improved angiogram signal-to-noise ratio, contrast, vessel density repeatability, 
and bulk motion noise cleanup in the foveal avascular zone, while preserving the connectivity 
of the vascular networks in the angiogram. 
© 2017 Optical Society of America 

OCIS codes: (170.4500) Optical coherence tomography; (170.4470) Ophthalmology; (100.2980) Image 
enhancement; (330.4150) Motion detection. 
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1. Introduction 
Optical coherence tomography angiography (OCTA) is a noninvasive blood flow imaging 
technique [1–5] that allows depth-resolved visualization of functional vasculatures with 
capillary resolution. It has become an important clinical tool in ophthalmology [6–14] and 
exhibits great potential for dermatology [15, 16] and neurology [17]. To obtain flow signal, 
OCTA algorithms [1, 3, 18–20] rely on mathematical operations that quantify variations in 
the amplitude and/or the phase of optical coherence tomography (OCT) signal between at 
least two consecutive B-scans acquired at the same raster position. However, since the inter-
scan time cannot be extremely small without affecting sensitivity to slow-speed blood flow 
[21, 22], OCTA of the retina is sensitive to involuntary eye motion between B-scans. 

Software and hardware solutions exist to remove the effects of eye motion on OCTA. 
Microsaccadic motion can be corrected by registration methods [23–27] that retrieve the 
signal missing in corrupted frames from other scans. In addition, tracking-assisted scanning 
schemes [28–32] have been implemented in commercial systems to prevent data recording 
during a microsaccade. Also, inter-volume optical microangiography [33] operates at an ultra-
high volumetric imaging rate in order to detect flow by recognizing signal variations between 
adjacent volumes instead of consecutive frames, showing potential to reduce the prevalence 
of motion artifacts. Yet, small-amplitude bulk motion caused by ocular drift, pulsation, 
tremors, or OCT system mechanical instabilities is currently undetectable by tracking systems 
and only partially attenuated by averaging registered images. 

One way to reduce the effect of bulk motion is to co-register the reflectance images at 
each scanning position before computing the flow image. Methods that iteratively maximize 
cross-correlation of successive B-scans prior to OCTA processing have been used to estimate 
displacement and compensate bulk image shifts as well as global phase variations in the axial 
and lateral directions [34–36]. However, the actual three-dimensional nature of eye motion 
during scanning challenges this approach, which is limited to in-plane shifts. Another 
approach to solve the bulk motion problem is to approximate its velocity to the spatial 
average (along A-scan and B-scan directions) of the reflectance OCT signal variation between 
consecutive scans [37]. This solution requires acquisition of many frames of the same B-scan 
and assumes a low capillary density on the imaged sample. 

In our split-spectrum amplitude decorrelation angiography (SSADA) algorithm, a simple 
bulk motion subtraction method was introduced to minimize the noise caused by motion 
between two consecutive B-scans. The decorrelation caused by bulk motion is estimated by 
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the median decorrelation value within retinal tissue region, and then subtracted from all pixels 
at each B-frame of SSADA [9]. Although the median subtraction method improves the image 
quality, it constitutes an inaccurate approximation of the actual bulk motion contribution to 
flow signal. 

In this paper, we propose a more accurate mechanism to remove the noise introduced by 
bulk motion. Using regression analysis; we first define the relationship between background 
bulk motion decorrelation and the logarithm of the OCT reflectance in a group of A-lines 
devoid of flow voxels within a segment of a B-frame. Then, we assign zero decorrelation 
values to the non-flow pixels in each segment where the respective voxels have values below 
a certain threshold derived from the relation between bulk motion and reflectance. A 
nonlinear model that relates decorrelation and flow velocity [38] is used to subtract estimated 
bulk-motion velocity from the measured velocity inflow voxels. Compared to the median 
subtraction algorithm, we demonstrate reduced bulk motion at avascular regions, improved 
image quality and vessel density repeatability while preserving vascular connectivity. 

2. Methods 

2.1 Data acquisition 

Volumetric OCTA scans of the macula and the optic disc of healthy subjects were acquired 
using a wide-field 200-kHz OCT system. The system relies on a swept-source configuration 
that utilizes a tunable laser (Axsun, Inc., Billerica, MA, USA) operating at 1044 nm center 
wavelength with a 104 nm tuning range. It has a lateral resolution of 12 µm and an axial 
resolution of 7.5 µm, which is increased to 22.5 µm on the flow image. Participants were 
recruited at the Casey Eye Institute of OHSU and informed consent was obtained. The 
protocol was approved by the Institutional Review Board/Ethics Committee of OHSU and 
adhered to the tenants of the Declaration of Helsinki in the treatment of human participants. 
The scan pattern consisted of 800 B-frames composed of 850 A-lines and located at 400 
raster positions (y-priority), covering an 8x6mm2 area. Each B-scan was completed in 4.75 
ms. 

2.2 Data processing 

Data was processed using the Matlab 2013a release (Mathworks, Natick, MA, USA). Cross-
sectional OCT images were generated and B-frames acquired at the same raster position were 
averaged. OCTA data was calculated using the SSADA algorithm [1]. Segmentation of the 
vitreous and inner limiting membrane (ILM) interface, outer plexiform layer (OPL) and outer 
nuclear layer (ONL) interface as well as Bruch’s membrane and choroid interface was 
automatically performed by a directional graph-search algorithm developed by Zhang et al. 
[39]. The region contained between ILM and OPL is the vascularized inner retina. En face 
images were generated by maximum projection of the flow signal within the inner retinal 
slab. An expert grader manually corrected segmentation errors. 

Frames affected by microsaccadic artifacts were recognized on the en face OCTA image 
by simply identifying summed flow signal above a threshold [28], and excluded from 
analysis. Then, we recognized the relationship between bulk motion contribution to 
decorrelation signal and the local reflectance. Because decorrelation is not linearly related to 
velocity, the subtraction of the bulk motion contribution must be performed on the velocity 
domain rather than in the decorrelation domain. Non-microsaccadic frames were divided into 
5 segments where local reflectance does not vary abruptly. The segments are small enough 
that the axial-lines within them could be acquired within a small enough time frame (less than 
1 millisecond) that bulk motion could be considered to be approximately constant within the 
segments. Then, we developed a method to estimate the bulk motion velocity from frame 
segments. 
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At each segment, we selected a group of A-lines devoid of inner retinal flow voxels. For 
this purpose, A-lines crossing large vessels were first identified by a binary large vessel mask 
of the en face angiogram and excluded from the following analysis. The mask was 
constructed by successively applying amplitude thresholding to remove the majority of 
capillary pixels, a morphological opening (erosion followed by dilation) to cleanup dispersed 
pixels, a Gaussian convolution filter to prevent holes in the middle of large vessels and a final 
binarization step. From the remaining A-lines, the first 10 percentile with the lowest 
decorrelation signal were selected, assuming these are composed by non-flow voxels only. 
The threshold chosen is approximately the upper boundary of inner retinal vessel densities 
among the healthy subjects that participated in the study. The decorrelation and natural 
logarithm of the reflectance data selected in the segment were converted into vectors and 
sorted by increasing order of reflectance values. Then, the vectors were divided into 20 
equally sized bins and the reflectance and decorrelation values in each bin were averaged, 
forming the new vectors ,bin binD R . The slope ( )km  and intercept ( )kn  of 

the ( )bin binD f R= linear relationship were identified and recorded for all k = 2000 segments. 

The slope of the linear fit was larger at frames with larger prevalence of motion, as shown in 
Figs. 1(A)-(C). The RMS deviation ( BMS ) of the un-binned data was also recorded at each 

segment. Another linear regression fitting was performed to recognize the relationship 
between the deviation BMS and the slopes km of all segments forming a volumetric scan, 

expressed as BM kS a bm= + (Fig. 1D). Then, the voxels in the kth segment with decorrelation 

below the threshold defined in Eq. (1) were set to zero. In frames affected by microsaccadic 
artifacts no A-lines were selected, the regression analysis step was skipped and the 
decorrelation values of all voxels were also set to zero. Fitting parameters in segments with 
less than five A-lines selected for regression analysis were substituted by the parameters of 
the neighboring segment within the same B-frame. 

 ( ) 1.96( )TH k k kD m R n a bm= + + +  (1) 

Vascular voxels remain after thresholding, and the contribution of bulk motion ,BM bloodD to 

their flow signal was obtained using the median reflectance of the flow voxels within the 
frame segment ( bloodR in Fig. 2A). An estimate of bulk motion velocity was calculated by a 

nonlinear model that related decorrelation and velocity in laboratory blood flow phantoms 
[38] (Eq. (2). 

 ,1
ln 1  

3
BM blood brownian

BM sat
sat brownian

D D
v

D D
v

− 
= − − − 

 (2) 

The saturation value satD was calculated as 0.95 times the 99th percentile of the flow signal 

in the en face angiogram. brownianD was estimated assuming that it maintains the same 

proportion to satD as the one reported previously [38]. The value of the saturation 

velocity satv was approximated utilizing the experimental data obtained in Ref [38], adjusting 
for the difference in inter-scan period between the Avanti RTVue-XR (Optovue, Inc. 
Fremont, CA, USA) and the wide-field system used here. Equation (2) was also used to 
calculate a velocity

0
v  for each original decorrelation value

0
D . Voxels with decorrelation 

above satD  cannot be converted to velocity domain by Eq. (2) and were assigned satD and 

satv values. The calculated
BM

v was subtracted from 
0

v at every vascular voxel and the bulk 

motion-free decorrelation 1D was obtained by Eq. (3). By this mechanism we prevented 

excessive subtraction from voxels representing high-speed flow; where the impact of bulk 
motion on decorrelation value is significantly lower (Figs. 2 B-C). 
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1 exp  3 BM

sat brownian brownian
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D D D D

v

− 
= − − + 

 
 (3) 

 

Fig. 1. Linear regression of decorrelation signal (DBM) due to bulk motion as a function of the 
natural logarithmic tissue reflectance (R). Panel A shows a 6mm × 8mm (horizontal x vertical) 
OCT angiography scan (400B-frames × 850pixels) from which frames 134, 208, and 336 were 
selected as examples for moderate, low, and high bulk motion. Panel B shows the cross-
sectional B-scans of frames 134 (subtle bulk motion), 208 (moderate bulk motion) and 336 
(high bulk motion near microsaccade). SSADA decorrelation signal in red color is overlaid on 
top of the reflectance OCT signal. Panel C shows the corresponding linear fit of the binned R 
vs. DBM for the central segment indicated by a red arrow in B. In panel D it is observed that the 
RMS deviation of un-binned D of non-flow voxels from the fitting curve found at each 
segment exhibit a linear dependence on the corresponding segment’s slope, shown for all 
segments forming a volumetric scan. 
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Fig. 2. Removal of bulk motion from voxels within each B-frame segment. (A) Decorrelation 
due to bulk motion (DBM) is modeled as a function of logarithmic reflectance R based linear 
regression coefficients mk and nk from the regression analysis of the kth frame segment. Voxels 
with decorrelation value below threshold DTH set at the 97.5 percentile of bulk motion 
(assuming normal distribution) are classified as non-flow voxels (D set to zero). The bulk 
motion-induced decorrelation in blood DBM,blood is calculated using the reflectance of 
blood bloodR obtained from the median reflectance of flow voxels (voxel with D above DTH). 

Bulk motion velocity vBM is obtained from DBM,blood using Eq. (2). (B) The bulk motion velocity 
is subtracted from a voxel with uncorrected decorrelation value D0 and corresponding velocity 
v0 that is high relative to the saturation velocity according to the nonlinear curve relating flow 
signal D to velocity. Therefore subtracting vBM from v0 to obtained corrected velocity v1and 
corrected flow signal D1 has little effect. (C) The bulk motion velocity is subtracted from a 
voxel with uncorrected decorrelation value D0 and corresponding velocity v0 that is lower than 
the saturation velocity. Here subtracting vBM from v0 to obtained corrected velocity v1and 
corrected flow signal D1 has a larger effect than the previous example. 

A flow diagram of the algorithm is shown in Fig. 3. 

 

Fig. 3. Flow diagram of the bulk-motion (BM)removal algorithm. 
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2.3 Comparison to median subtraction algorithm 

The regression-based bulk motion subtraction method was compared with an earlier method 
in which the median decorrelation value of the segmented retinal region was subtracted from 
all retinal voxels within the B-frame segments defined above. The threshold used to 
distinguish vascular from non-flow pixels in original and median-subtracted angiograms was 
obtained from the decorrelation at the foveal avascular zone (FAZ) of en face projections 

by 2.33FAZ FAZflo Dw DD σ+= , where D and σ represent mean value and standard deviation. 

2.4 Comparison to inter-B-scan registration algorithm 

An alternative approach to bulk motion removal a posteriori is to compensate the bulk motion 
between consecutive B-scans prior to computing OCTA flow signal. The benefits and 
tradeoffs of this pre-processing step in improving the artifact removal efficacy by the 
regression-based bulk-motion subtraction algorithm were evaluated. 

For inter-B-scan registration we applied in SSADA a method similar to the one proposed 
by Lee et al [34]. Briefly, OCT images were first up-sampled by a factor of two in lateral (x) 
and axial (z) dimensions. An iterative routine maximizes the cross-correlation of the OCT 
signal of the two B-scans acquired at each position by rigid displacements of the second B-
scan in two directions. After recognizing the optimal shift, it was applied to the second OCT 
image of each the 11 pairs generated by spectrum splitting [40]. Finally, the OCT images 
were down-sampled and the amplitude decorrelation signal was computed. 

2.5 Image quality assessment 

Bulk motion subtraction efficiency was assessed by the percentage of average FAZ signal 
remaining within the segmented retinal slab after processing the original data. 

Parafoveal signal-to-noise ratio (SNR) was calculated by Eq. (4). The parafoveal annulus 
is concentric with the fovea, has an outer diameter of 2.5 mm and an inner diameter of 0.6 
mm. 

  parafoveal FAZ

DFAZ

D D
SNR

σ
−

=  (4) 

Vessel density was defined for en face projection as the percentage of area occupied by 
vascular pixels within the parafovea. Its coefficient of variation was used to assess inter-scan 
vessel density repeatability. 

The RMS image contrast was defined as the standard deviation of the en face flow image, 
expressed in Eq. (5): 

 
2

( , )

1
( ( , ) )

x y A
RMSC D x y D

A ∈

= × −  (5) 

Preservation of the vascular integrity after bulk motion subtraction was assessed by the 
vascular connectivity, defined in a skeletonized version of the en face angiogram by the 
percentage of flow pixels contained in groups larger than five. Skeletonization of en face 
OCTA is the process of converting vessels into lines with a one-pixel width. It was performed 
by the function bwmorph included in Matlab’s Image Processing Toolbox. This function 
relies on an algorithm that iteratively removes pixels on boundaries of objects recognized on a 
binary image until the objects remain unchanged [41]. Since en face retinal angiograms 
contain vasculature of different dimensions (Fig. 4A), skeletonization was performed 
separately for large vessels and capillaries. If vessels with different calibers were not 
skeletonized separately, inaccuracies in the recognition of large vessels sometimes might be 
manifest (Figs. 4B-C). 
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Fig. 4. Skeletonization of an en face angiogram. Close up of the foveal region is shown for 
better visualization. (A) Original angiogram. (B) Skeletonized version by applying the 
algorithm described in [41] separately on vessels of different calibers. This algorithm is 
executed by the function bwmorph in Matlab’s Image Processing Toolbox. (C) Inaccurate 
skeletonization obtained by the same algorithm applied directly on the original en face 
angiogram. Vessels of larger caliber on the upper left corner are almost indistinguishable. 

The p-value of a paired sample t-test evaluated the statistical significance of the results. 

3. Results 
Optic disc and macula from eight healthy volunteers were imaged. Scans containing 
microsaccadic artifacts crossing the parafoveal annulus were processed by the algorithm but 
excluded from the quantitative analysis. 

A-lines containing microsaccadic artifacts and large vessels were successfully recognized 
(Fig. 5). The background A-lines selected at each segment avoided those containing vascular 
information (Fig. 5C). Segments where the fitting parameters had to be obtained from 
adjacent segments due to the small number of background A-lines available never represented 
more than 3% of the total. Segments with no A-lines selected were located at the 
microsaccadic artifacts. 

 

Fig. 5. Selection of the background A-lines. (A) 6 × 8mm en face inner retinal angiogram on 
macula.(B) Identification of A-lines containing large vessel flow signal or microsaccadic 
artifacts. (C) Map of the A-lines contained within the lowest 10 percentile of maximum 
projection values (green) after removing the large vessel mask in (B) overlaid on top of the en 
face angiogram (purple). (D) Distribution of the number of A-lines selected for regression 
analysis in the 2000 segments. 

Changes in bulk motion background signal could be observed by simple inspection of 
wide-field frames affected by moderate bulk motion on en face images (Fig. 6A). The fitting 
parameters varied significantly along a B-scan (Fig. 6B), showing that segment partitioning 
helped reduce the effect of variations in local reflectance, allowing a more accurate bulk 
motion removal. 
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Fig. 6. Within-frame variation of bulk motion. En face image of an unprocessed macular scan 
is shown in (A). A black arrow indicates the position of a frame of interest. Appearance of 
artefactual frames varied along the vertical axis due to changes in local reflectance. Fitting 
slope of each of the five segments into which the frame is partitioned is shown in (B). 

Background signal at FAZ and bulk motion artefactual frames were effectively removed 
by the thresholding step (Figs. 7A-C), resulting in improved contrast between capillaries and 
background. Then, the brighter appearance of vascular pixels contained at artefactual lines 
was corrected by the step of bulk motion velocity subtraction (Fig. 7D). Larger subtraction 
from vascular voxels occurred in (non-microsaccadic) artefactual frames and smaller 
subtraction occurred at the flow voxels with decorrelation values near saturation (Fig. 7E). 

 

Fig. 7. Removal of bulk motion signal from a macular OCTA scan. (A) Unprocessed en face 
retinal angiogram. (B) After removal of decorrelation signal from bulk motion voxels using a 
reflectance-adjusted threshold. (C) Difference between images A and B. (D) After subtraction 
of bulk motion velocity from the vascular voxels. (E) Difference between images B and D. 

Compared to the prior median subtraction algorithm (Table 1), the regression-based bulk 
motion subtraction algorithm removed a larger percentage of decorrelation noise from the 
FAZ, achieved a greater improvement in vessel density measurement repeatability, a better 
signal to noise ratio for flow detection and a better RMS contrast. Two methods preserved 
similar vascular continuity. No improvement of RMS contrast was observed between median-
subtracted and original angiograms (p > 0.05), but significant improvement was found after 
regression-based subtraction. The vessel density did not see significant reduction from the 
original to the regression-based motion subtracted angiograms (p = 0.0687). The median-
based algorithm running time was 4.6 seconds while the regression-based algorithm took 20.3 
seconds on CPU. A qualitative comparison of the two bulk motion subtraction methods is 
shown for en face angiograms of the macula and optic disc in Fig. 8 and for one 
representative cross-sectional B-frame in Fig. 9. 
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Table 1. Performance Evaluation of Two Bulk Motion Subtraction Methods 

 

Percentage of 
FAZ signal 
remaining 
after 
subtraction* 

Mean vessel 
density 

(coefficient 
of variation) 

Vascular 
connectivity* 

Flow 
SNR* 

RMS 
contrast* 

Original (No 
subtraction) N/A 

87% 
(4.4%) 

0.920 ± 0.003 10.6 ± 1.1 0.051 ± 0.002 

Median subtraction 
11.9% ± 1.0% 88% (3.3%) 0.921 ± 0.006 16.0 ± 1.7 0.051 ± 0.002 

Regression-based 
bulk motion 
subtraction 

9.6% ± 0.8% 
85% 

(0.9%) 
0.926 ± 0.003 19.7 ± 1.8 0.060 ± 0.001 

p-value** 0.0034 0.0081 0.1783 <0.01 <0.01 

* Mean ± standard error. 
** Values correspond to the comparison between the two subtraction methods; n = 8. 

 

 

Fig. 8. Qualitative comparison between median subtraction and regression-based bulk motion 
subtraction in an optic disc scan (A1-A7) and a macular scan (B1-B7).A1, B1 Unprocessed en 
face images. A2, B2 Scans after subtracting the median of the frame’s retinal region. A3, B3 
are obtained by subtracting A1-A2 and B1-B2 respectively. A4, B4 Scans after regression-
based bulk motion subtraction. A5, B5 are obtained by subtracting A1-A4 and B1-B4 
respectively. A6 and A7 are close-ups of the 3.8mm × 1.7mm sections enclosed by dashed 
lines on A2 and A4 respectively.B6 and B7 are close-ups of the 3.4mm × 2.5mm sections 
enclosed by dashed lines on B2 and B4 respectively. 
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Fig. 9. Qualitative comparison between two bulk motion subtraction algorithms applied to a 
non-microsaccadic B-frame with large contribution of bulk-motion. Projection artifacts are not 
corrected. A Reflectance image. B Unprocessed flow image. C Flow image after median 
subtraction. D Flow image after regression-based bulk motion subtraction. E and F are close-
ups of the 1.3 mm B-scan sections enclosed by dashed lines in C and D respectively. 

The pre-compensation performed by inter-B-scan registration could help improve the 
artifact removal efficiency of the bulk motion subtraction algorithm (Fig. 10(B) vs. Figure 
10(D)). Addition of this step represented an average increase of 9 second of raw data 
processing per frame on CPU. Bright artifacts were reduced but not completely removed by 
inter-B-scan registration alone (Fig. 10C) and a background threshold was still necessary to 
identify vascular pixels. The pre-compensation could not remove the vessel density 
dependency on local reflectance by simple thresholding, while the regression-based 
thresholding proposed in this manuscript provided a correct spatial distribution of vascular 
pixels (Fig. 10(G) vs. Fig. 10(H)). Additionally, the background-capillary contrast of the 
resulting image was slightly degraded compared to the case where no displacements are 
implemented prior to SSADA (Figs. 10(E) vs. Fig. 10(F)). 
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Fig. 10. Investigation of the benefits of bulk motion pre-compensation by optimization of the 
bulk image shifts of the OCT images previous to OCTA processing by SSADA. A En face 
original OCTA without pre-compensation. B En face OCTA after regression-based bulk 
motion subtraction from the data set used in A. C Original en face non-thresholded OCTA 
after inter-B-scan registration. D Result of applying the regression-based bulk motion 
subtraction on the data set used for C. The residual artifacts still observed in B are better 
removed in D. E and F are close-ups of the regions enclosed by dashed lines in B and D 
respectively. Better capillary-background contrast was observed in E. G is a binary vessel 
mask obtained by imposing a fixed threshold on C while H is obtained by imposing a local 
regression-based threshold at each segment of a frame. Region enclosed shows that pre-
compensation by inter-B-scan registration does not correct the vessel density dependence on 
local signal strength. Contrastingly, by a regression-based local thresholding a more 
homogeneous perfusion is identified for the whole scan in H. 

4. Discussion 
Currently, correction of bulk motion contribution to flow signal in SSADA is performed by a 
median subtraction algorithm that underestimates the real bulk motion background and 
ignores the saturation of decorrelation at vascular voxels. In this manuscript, we propose a 
new method to increase the accuracy of bulk motion subtraction, improving image quality and 
enhancing the repeatability of vessel density quantification while preserving vascular 
integrity. This could improve image interpretation by reducing bright line artifacts, and make 
quantification of vessel density more accurate. Moreover, unlike in the median subtraction 
algorithm, vascular recognition from background does not require referencing to an avascular 
region such as the FAZ, allowing computation of the vessel density on scans outside the 
macula such as the optic nerve head and anterior segment. Although this algorithm is 
demonstrated for SSADA, it can be potentially applied to other OCTA implementations such 
as speckle variance [20] and optical microangiography [3]. 

The algorithm is based on three main steps: (1) regression analysis of the background 
decorrelation vs. reflectance curves, (2) reflectance-dependent thresholding and (3) 
subtracting bulk motion velocity from the vascular voxels to retrieve bulk motion-free 
decorrelation values. Both the thresholding step and the estimation of BMv rely on the accuracy 
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of the linear regression routine, which assumes only background A-lines are selected. If 
voxels containing real flow signal were mistakenly chosen, they would contribute to larger 
flow signal at large reflectance voxels, overestimating the slope of the fitting curve. This 
would cause larger subtracted values, underestimation of the vessel density and degradation 
of the vascular integrity. We chose the first 10 percentile of A-lines with lower flow signal 
after removing the large vessel mask, given that the mean vessel density of macular scans did 
not exceed 90% for healthy subjects. This assumption underestimates the number of flow 
voxels. In optic disc scans, where some regions have a larger vessel density, the first five 
percentile of A-lines contained in the whole B-frame were selected. Averaging of voxel 
values in bins before regression analysis helped to minimize inaccuracies caused by 
occasional outliers. 

Implementation of inter-B-scan registration prior to SSADA alone could not correct the 
disadvantages inherent to fixed thresholding. On the other hand, implementation of the 
regression-based algorithm alone was more successful in recognizing vasculature from 
background and did so in a shorter time. If inter B-scan registration could be optimized to 
preserve or improve capillary contrast, it can be a supplementary step to further improve the 
BM removal efficacy. 

This algorithm uses information available in a single scan to remove bulk motion 
background and small-amplitude artifacts. However, given the high prevalence of 
microsaccadic artifacts in OCTA, it would not eliminate the need for registration of more 
scans [23] in a clinical scenario. Although commercial systems have adopted various forms of 
real-time tracking to prevent the recording of microsaccadic motion [28, 32], drifts between 
frames before and after microsaccades remain uncorrected, still necessitating registration of at 
least two volumes for truly artifact-free OCTA. 

5. Conclusion 
In summary, we have demonstrated a method that accurately subtracts bulk motion 
contribution to decorrelation of background and vascular voxels without affecting vascular 
integrity. The method recognizes the bulk motion decorrelation dependence on reflectance 
signal for background voxels; filters out background by a reflectance-dependent thresholding 
step, subtracts a bulk motion velocity value calculated by a nonlinear model that relates 
decorrelation and velocity, and finally retrieves the bulk motion-free decorrelation value. The 
regression-based bulk motion subtraction algorithm improved image quality, vessel density 
measurement repeatability and accuracy of bulk motion noise removal compared to an earlier 
median subtraction algorithm. Pre-compensation by OCT inter-B-scan registration before 
OCTA could improve the efficacy in removing visible artifacts at the cost of increased 
processing time and reduced capillary-background contrast. The regression-based algorithm 
takes into account the dependence of decorrelation on reflectance signal and hence, it shows 
potential to reduce the effect of signal strength on vessel identification. Furthermore, it can be 
used to identify flow voxels without the need for an avascular reference area. Finally, since it 
corrects flow signal on voxels of the three-dimensional OCTA data set, it might improve 
capillary flow index quantification accuracy and image quality on projection-resolved OCTA. 
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